APPENDIX D

- (i) Contamination Test Results
- (ii) Gas and Groundwater Monitoring Results
- (iii) Generic Assessment Criteria for Residential Scenario

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden

Deeside CH5 3US

Tel: (01244) 528700 Fax: (01244) 528701 email: mkt@alcontrol.co.uk

website: www.alcontrol.co.uk

Envirolab Sandpits Business Park Mottram Road Hyde

SK14 3AR ATTN: Envirolab Data

CERTIFICATE OF ANALYSIS

Date: 01 September, 2008

Our Reference: 08/13955/02/01 **Your Reference:** 722048-4978

Location: GROVEFIELD WAY CHELTENHAM

A total of 21 samples was received for analysis on Friday, 15 August 2008 and completed on Friday, 22 August 2008. Accredited laboratory tests are defined in the log sheet, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation. We are pleased to enclose our final report, it was a pleasure to be of service to you, and we look forward to our continuing association.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials- whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Signed

<u>Diane Whittlestone</u>
Tech. Support Manager

David O'Hare
Project Manager

Valid if signed by any of the above signatories.

Caroline Suttie
Project Coordinator

Team Leader

Compiled By

Briony Johnson

ALcontrol Laboratories TEST SCHEDULE

JOB NUMBER : 08/13955/02 **BATCH NUMBER** : 1

CLIENT : Envirolab CLIENT REF/CODE : 722048-4978

CONTACT : Envirolab Data ORDER NUMBER : 34613

DATE OF RECEIPT: 15/08/08 **TURNAROUND**: 5 days

LOCATION: GROVEFIELD WAY CHELTENHAM

Page 2 of 11

Numeric values indicate additional scheduling

* indicates test subcontracted

Sample	တ္					0	۲٥							
ոple Number	Sample Identity	P/V	Depth	Sample Type	Metals ICP. 9 (S)	Organic Matter Total (S)	Sulphate Soluble Kone 2:1 (S)	рН (S)						
1	90361 BH6 D5	TUB 400g	0.20	SOLID	Χ	Χ	Χ	Χ						
2	90362 BH6 D6	TUB 400g	0.50	SOLID	Χ	Х	Χ	Χ						
3	90363 SA1 ES2	TUB 400g	0.20	SOLID	Χ	Χ	Χ	Χ						
4	90364 SA2 ES2	TUB 400g	0.25	SOLID	Χ	Х	Χ	Χ						
5	90365 SA3 D5	TUB (D)	0.40	SOLID	Χ	Χ	Χ	Χ						
6	90366 TP1 D4	TUB (D)	0.80	SOLID	Χ	Χ	Χ	Χ						
7	90367 TP2 ES2	TUB 400g	0.20	SOLID	Χ	Χ	Χ	Χ						
8	90368 TP3 ES2	TUB 400g	0.15	SOLID	Χ	Χ	Χ	Χ						
9	90369 TP4 ES2	TUB 400g	0.21	SOLID	Χ	Х	Χ	Χ						
10	90370 TP5 ES2	TUB 400g	0.15	SOLID	Χ	Χ	Χ	Χ						
11	90371 TP6 ES3	TUB 400g	0.65	SOLID	Χ	Χ	Χ	Χ						
12	90372 TP6 ES1	TUB 400g	0.15	SOLID	Χ	Χ	Χ	Χ						
13	90373 TP7 ES4	TUB 400g	0.60	SOLID	Χ	Χ	Χ	Χ						
14	90374 TP8 D5	TUB 400g	0.90	SOLID	Χ	Χ	Χ	Χ						
15	90375 TP9 ES4	TUB 400g	0.60	SOLID	Χ	Χ	Χ	Χ						
16	90376 TP8 ES3	TUB 400g	0.60	SOLID	Χ	Χ	Χ	Χ						
17	90377 TP9 D2	TUB (D)	0.20	SOLID	Χ	Χ	Χ	Χ						
18	90378 TP10 D3	TUB (D)	0.40	SOLID	Χ	Х	Χ	Χ						
19	90379 TP11 ES1	TUB 400g	0.20	SOLID	Χ	Χ	Χ	Χ						
20	90380 TP12 ES2	TUB 400g	0.15	SOLID	Χ	Х	Χ	Χ						
21	90381 TP13 ES2	TUB 400g	0.20	SOLID	Χ	Χ	Χ	Χ						
			Total Numbe	r of Tests	21	21	21	21						

Printed: 01/09/08 15:26:53

ALcontrol Laboratories Analytical Services Sample Descriptions

Job Number: 08/13955/02/01 Grain sizes

 Client:
 Envirolab
 <0.063mm</th>
 Very Fine

 Client Ref:
 722048-4978
 0.1mm - 0.063mm
 Fine

0.1mm - 2mm Medium
2mm - 10mm Coarse
>10mm Very Coarse

Sample Identity	Depth (m)	Colour	Grain Size	Description	Batch
90361 BH6 D5	0.20	Brown	0.1mm - 0.063mm	Loam (topsoil) with some Vegetation	1
90362 BH6 D6	0.50	Grey	0.1mm - 0.063mm	Clay with some Stones	1
90363 SA1 ES2	0.20	Brown	0.1mm - 0.063mm	Loam (topsoil) with some Vegetation	1
90364 SA2 ES2	0.25	Brown	0.1mm - 0.063mm	Clay Loam with some Vegetation	1
90365 SA3 D5	0.40	Brown	<0.063mm	Clay	1
90366 TP1 D4	0.80	Grey	0.1mm - 0.063mm	Silty Clay with some Stones	1
90367 TP2 ES2	0.20	Brown	0.1mm - 0.063mm	Clay	1
90368 TP3 ES2	0.15	Brown	0.1mm - 0.063mm	Silt Loam with some Vegetation	1
90369 TP4 ES2	0.21	Brown	0.1mm - 0.063mm	Loam (topsoil) with some Vegetation	1
90370 TP5 ES2	0.15	Brown	0.1mm - 0.063mm	Loam (topsoil) with some Vegetation	1
90371 TP6 ES3	0.65	Brown	0.1mm - 0.063mm	Silty Clay with some Vegetation	1
90372 TP6 ES1	0.15	Brown	0.1mm - 0.063mm	Loam (topsoil) with some Stones	1
90373 TP7 ES4	0.60	Brown	0.1mm - 0.063mm	Clay	1
90374 TP8 D5	0.90	Grey	0.1mm - 0.063mm	Silty Clay with some Stones	1
90375 TP9 ES4	0.60	Brown	0.1mm - 0.063mm	Silty Clay with some Stones	1
90376 TP8 ES3	0.60	Brown	0.1mm - 0.063mm	Clay	1
90377 TP9 D2	0.20	Brown	0.1mm - 0.063mm	Loam (topsoil) with some Vegetation	1
90378 TP10 D3	0.40	Grey	0.1mm - 0.063mm	Clay	1
90379 TP11 ES1	0.20	Brown	0.1mm - 0.063mm	Clay Loam with some Vegetation	1
90380 TP12 ES2	0.15	Brown	0.1mm - 0.063mm	Clay Loam with some Vegetation	1
90381 TP13 ES2	0.20	Brown	0.1mm - 0.063mm	Clay Loam with some Glass	1

^{*} These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials-whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

¹ Sample Description supplied by client

ALcontrol Laboratories Analytical Services * ISO 17025 accredited Validated **Table Of Results Preliminary**

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Matrix: Job Number: 08/13955/02/01 **SOLID**

GROVEFIELD WAY CHELTENHAM **Client:** Envirolab **Location:**

Client Ref. No.: 722048-4978 Client Contact: Envirolab Data

Sample Identity	90361 BH6 D5	90362 BH6 D6	90363 SA1 ES2	90364 SA2 ES2	90365 SA3 D5	90366 TP1 D4	90367 TP2 ES2	90368 TP3 ES2	90369 TP4 ES2		
Depth (m)	0.20	0.50	0.20	0.25	0.40	0.80	0.20	0.15	0.21	×	
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	etho	_oD
Sampled Date										Method Code	LoD/Units
Sample Received Date	15.08.08	15.08.08	15.08.08	15.08.08	15.08.08	15.08.08	15.08.08	15.08.08	15.08.08	ode	its
Batch	1	1	1	1	1	1	1	1	1		
Sample Number(s)	1	2	3	4	5	6	7	8	9		
Arsenic	8	6	9	11	6	<3	8	10	11	TM129 [#] _M	<3.0 mg/kg
Cadmium	0.5	0.4	0.4	0.5	0.5	0.2	0.3	0.5	0.5	TM129	<0.2 mg/kg
Chromium	40	44	42	41	55	41	38	38	36	TM129 [#] _M	<4.5 mg/kg
Copper	36	29	29	35	37	23	25	30	30	TM129 [#] _M	<6 mg/kg
Lead	100	36	78	110	22	11	45	77	72	TM129 [#] _M	<2 mg/kg
Mercury	0.8	0.6	0.5	0.6	< 0.4	0.4	< 0.4	0.4	0.5	TM129 [#] _M	<0.4 mg/kg
Nickel	30	37	31	39	58	34	32	32	33	TM129 [#] _M	<0.9 mg/kg
Selenium	<3	<3	<3	<3	<3	<3	<3	<3	<3	TM129 [#] _M	<3 mg/kg
Zinc	140	100	130	130	99	68	86	120	120	TM129 [#] _M	<2.5 mg/kg
Water Soluble Sulphate as SO4 2:1 Extract	0.023	0.044	0.003	< 0.003	0.029	0.067	< 0.003	< 0.003	< 0.003	$TM098^{\#}_{\ M}$	<0.003 g/l
pH Value	7.47	8.12	6.84	7.86	8.12	8.27	7.96	6.68	7.82	$TM133^{\#}_{M}$	<1.00 pH Units
Total Organic Matter	9.8	2.8	7.4	6.4	1.4	1.0	4.1	7.7	7.3	TM132 [#]	<0.35 %

All results expressed on a dry weight basis.

Date	01.09.2008
Date	01.07.2000

ALcontrol Laboratories Analytical Services * ISO 17025 accredited Validated **Table Of Results Preliminary**

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Matrix: Job Number: 08/13955/02/01 **SOLID**

GROVEFIELD WAY CHELTENHAM **Client:** Envirolab **Location:**

Client Ref. No.: 722048-4978 Client Contact: Envirolab Data

	00250 505	00071 770	000 73 FD 6	00050 555	00254 550	00055 ED0	0005 6 550	00000 0000	00250		
Sample Identity	ES2	90371 TP6 ES3	90372 TP6 ES1	903/3 TP/ ES4	D5	90375 TP9 ES4	ES3	D2	90378 TP10 D3		
Depth (m)	0.15	0.65	0.15	0.60	0.90	0.60	0.60	0.20	0.40	×	_
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	etho	oD.
Sampled Date										Method Code	LoD/Units
Sample Received Date	15.08.08	15.08.08	15.08.08	15.08.08	15.08.08	15.08.08	15.08.08	15.08.08	15.08.08	ode	ts
Batch	1	1	1	1	1	1	1	1	1		
Sample Number(s)	10	11	12	13	14	15	16	17	18		
Arsenic	12	6	11	8	3	6	6	11	3	$TM129^{\#}_{M}$	<3.0 mg/kg
Cadmium	0.5	0.3	0.7	0.3	0.2	0.3	0.3	0.5	0.4	TM129	<0.2 mg/kg
Chromium	42	42	33	45	43	37	50	39	54	TM129 [#] _M	<4.5 mg/kg
Copper	43	20	58	25	24	22	27	34	27	$TM129^{\#}_{M}$	<6 mg/kg
Lead	130	23	280	19	12	11	18	100	14	$TM129^{\#}_{\ M}$	<2 mg/kg
Mercury	0.7	< 0.4	0.5	< 0.4	0.4	< 0.4	< 0.4	0.5	0.5	$TM129^{\#}_{\ M}$	<0.4 mg/kg
Nickel	38	29	33	42	34	34	50	36	43	$TM129^{^{\#}}_{\ M}$	<0.9 mg/kg
Selenium	<3	<3	<3	<3	<3	<3	<3	<3	<3	$TM129^{\#}_{M}$	<3 mg/kg
Zinc	150	90	300	92	67	69	92	110	83	TM129 [#] _M	<2.5 mg/kg
Water Soluble Sulphate as SO4 2:1 Extract	< 0.003	0.009	0.016	< 0.003	0.028	0.006	0.006	< 0.003	0.031	$TM098^{\#}_{M}$	<0.003 g/l
pH Value	6.86	8.37	7.69	8.27	8.19	8.27	8.14	7.59	8.07	TM133 [#] _M	<1.00 pH Units
Total Organic Matter	7.9	1.5	9.2	1.4	1.0	0.91	1.2	6.6	2.0	TM132 [#]	<0.35 %
	1	1									

All results expressed on a dry weight basis.

Date	01.09.2008

Validated	√	ALcontrol Laboratories Analytical Service
Preliminary		Table Of Results

ISO 17025 accredited

M MCERTS accredited

* Subcontracted test

» Shown on prev. report

Job Number: 08/13955/02/01 **Matrix:** SOLID

Client: Envirolab Location: GROVEFIELD WAY CHELTENHAM

Client Ref. No.: 722048-4978 Client Contact: Envirolab Data

Sample Identity	90379 TP11 ES1	90380 TP12 ES2	90381 TP13 ES2					
Depth (m)	0.20	0.15	0.20				M	Ι
Sample Type	SOLID	SOLID	SOLID				etho	oD.
Sampled Date							Method Code	LoD/Units
Sample Received Date	15.08.08	15.08.08	15.08.08)ode	its
Batch		1	1					
Sample Number(s)		20	21					
Arsenic	10	24	13				TM129 [#] _M	<3.0 mg/kg
Cadmium	0.7	0.7	0.6				TM129	<0.2 mg/kg
Chromium	43	46	47				TM129 [#] _M	<4.5 mg/kg
Copper	44	55	64				TM129 [#] _M	<6 mg/kg
Lead	110	5000	150				TM129 [#] _M	<2 mg/kg
Mercury	0.6	0.8	0.8				TM129 [#] _M	<0.4 mg/kg
Nickel	37	42	44				TM129 M	<0.9 mg/kg
Selenium	<3	<3	<3				TM129 [#] _M	<3 mg/kg
Zinc	160	170	190				TM129 [#] _M	<2.5 mg/kg
Water Soluble Sulphate as SO4 2:1 Extract	0.004	0.008	0.068				TM098 [#] _M	<0.003 g/l
pH Value	7.90	7.83	7.96				TM133 [#] _M	
Total Organic Matter	8.1	1.4	7.6				TM132 [#]	<0.35 %
· ·								
			1		i			

All results expressed on a dry weight basis.

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

 Job Number:
 08/13955/02/01

 Client:
 Envirolab

 Client Ref. No.:
 722048-4978

Report Key: Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10⁻⁷

NDP No Determination Possible * Subcontracted test

NFD No Fibres Detected » Result previously reported (Incremental reports only)

ISO 17025 accredited M MCERTS Accredited

PFD Possible Fibres Detected EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

ISO 17025 Accredited Surrogate Corrected **Summary of Method Codes contained within report:** Accredited Method **Description** Reference No. Method 4500E, AWWA/APHA, 20th Determination of Sulphate using the Kone Analyser DRY TM098 Ed., 1999 Method 3120B, AWWA/APHA, 20th TM129 Ed., 1999 / Modified: US EPA Determination of Metal Cations by IRIS Emission Spectrometer DRY Method 3050B Method 3120B, AWWA/APHA, 20th TM129 Ed., 1999 / Modified: US EPA Determination of Metal Cations by IRIS Emission Spectrometer DRY Method 3050B ELTRA CS800 Operators Guide DRY TM132 In - house Method Determination of pH in Soil and Water using the GLpH pH Meter WET TM133 BS 1377: Part 3 1990;BS 6068-2.5

¹ Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C. **NA** = not applicable.

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

 Job Number:
 08/13955/02/01

 Client:
 Envirolab

 Client Ref. No.:
 722048-4978

Summary of Coolbox temperatures

Batch No.	Coolbox Temperature (°C)
1	10.4

APPENDIX

APPENDIX

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH₄ by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during a fibre screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. Alcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the soil sample will be screened for the presence of fibres in-house and if no fibres are found will be reported as NFD no fibres detected. If fibres are detected, they will be removed and analysed by our documented in house method based on HSG 248(2005). If a sample is suspected of containing asbestos, then further preparation and analysis will be suspended on that sample until the asbestos result is known. If asbestos is present, then no further analysis will be undertaken.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request
- 12. **Surrogate recoveries** Currently the only analysis, which is surrogate corrected, is PAHs on soils. For EPH on soils the result is not surrogate corrected, but a percentage recovery is quoted.
- 13. **Product analyses** Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 14. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol).
- 15. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).
- 16. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 17. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

LIQUID MATRICES EXTRACTION SUMMARY											
ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS								
PAH MS	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC MS								
EPH	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID								
EPH CWG	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID								
MINERAL OIL	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID								
PCB 7 CONGENERS	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC MS								
PCB TOTAL	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GS MS								
SVOC	DCM	LIQUID/LIQUID SHAKEN SVOC	GC MS								
FREE SULPHUR	DCM	SOLID PHASE EXTRACTION	HPLC								
PEST OCP/OPP	DCM/EA	SOLID PHASE EXTRACTION	GC MS								
TRIAZINE HERBS	DCM/EA	SOLID PHASE EXTRACTION	GC MS								
PHENOLS MS	DCM	SOLID PHASE EXTRACTION	GC MS								
TPH by INFRA RED (IR)	TCE	LIQUID/LIQUID EXTRACTION	HPLC								
MINERAL OIL by IR	TCE	LIQUID/LIQUID EXTRACTION	HPLC								
SAPONIFIABLE	TCE	LIQUID/LIQUID EXTRACTION	HPLC								
UNSAPONIFIABLE	TCE	LIQUID/LIQUID EXTRACTION	HPLC								
GLYCOLS	DCM	LIQUID/LIQUID EXTRACTION	EZ FLASH								

SOLID MATRICES EXTRACTION SUMMARY											
ANALYSIS	D/C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS							
Solvent Extractable Matter	D&C	DCM	SOXTHERM	GRAVIMETRIC							
Cyclohexanes Ext. Matter	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC							
Thin Layer Chromatography	D&C	DCM	SOXTHERM	IATROSCAN							
Elemental Sulphur	D&C	DCM	SOXTHERM	HPLC							
PhenoIs by GCMS	WET	DCM	SOXTHERM	GC-MS							
Herbicides	D&C	HEXANE:ACETONE	SOXTHERM	GC-MS							
Pesticides	D&C	HEXANE:ACETONE	SOXTHERM	GC-MS							
EPH (DRO)	D&C	HEXANE:ACETONE	END OVER END	GC-FID							
EPH (Min oil)	D&C	HEXANE:ACETONE	END OVER END	GC-FID							
EPH (Cleaned up)	D&C	HEXANE:ACETONE	END OVER END	GC-FID							
EPH CWG by GC	D&C	HEXANE:ACETONE	END OVER END	GC-FID							
PCB tot / PCB con	D&C	HEXANE:ACETONE	END OVER END	GC-MS							
Polyaromatic Hydrocarbons (MS)	D&C	HEXANE:ACETONE	END OVER END	GC-MS							
Polyaromatic Hydrocarbons (FID)	D&C	HEXANE:ACETONE	END OVER END	GC-FID							
C8-C40 (C6-C40)EZ Flash	WET	HEXANE:ACETONE	SHAKER	GC-EZ							
Polyaromatic Hydrocarbons Rapid GC	WET	HEXANE:ACETONE	SHAKER	GC-EZ							
Semi Volatile Organic compounds	WET	DCM:ACETONE	SONICATE	GC-MS							

Date: 26 August 2008 Your Ref: 722048 - PO. 520151 Our Ref: 722048-(4978)-010

Project Manager: Margaret Baker Report to: Margaret Baker Envirolab Units 7 & 8

Sandpits Business Park

Mottram Road

Hyde Cheshire SK14 3AR

Final Test Report

Sample(s) of Soil from Grovefield Way, Cheltenham.

Received from Structural Soils Ltd

The Old School, Stillhouse Lane, Bristol, BS3 4EB

Date of receipt: 15 August 2008
Date analysis commenced: 15 August 2008
Date analysis completed: 26 August 2008

Method Statement

Speciated TPH analysis is performed in accordance with procedures A-T-022 using GC-MS with Head Space & A-T-023 using GC-FID.

Banded TPH analysis is performed in accordance with procedure A-T-007.

PAH analysis is performed in accordance with procedure A-T-019.

Loss on drying analysis is performed in accordance with procedure A-T-020. Subcontract analysis was submitted to a laboratory on Envirolab's approved vendors list.

A copy of the report is attached, accreditation status is detailed on the report.

Prepared by:

Melanie Marshall Laboratory Co-ordinator

Marshall

Approved by:

Thi McNabb

Reporting Analytical Chemist

M Walsh

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Tests marked "*" in this report are not included in the UKAS Accreditation Schedule for Envirolab.

Analytical results reflect the quality of the sample at the time of analysis only.

Envirolab Ref.											
	PROCEDURE	ISO17025	MCERTS	90361	90364	90365	90367	90368			
Location				ВН6	SA2	SA3	TP2	TP3			
Depth (m)				0.20	0.25	0.40	0.20	0.15			
Sample Ref				5	2	5	2	2			
Sample Type				D	ES	D	ES	ES			
MTBE _R	A-T-022	Υ	N	<0.01	<0.01	<0.01	<0.01	<0.01			
Benzene _R	A-T-022	Υ	N	<0.01	<0.01	<0.01	<0.01	<0.01			
Toluene _R	A-T-022	Υ	N	<0.01	<0.01	<0.01	<0.01	<0.01			
Ethyl Benzene _R	A-T-022	Υ	N	<0.01	<0.01	<0.01	<0.01	<0.01			
m & p Xylene _R	A-T-022	Υ	N	<0.01	<0.01	<0.01	<0.01	<0.01			
o Xylene _R	A-T-022	Υ	N	<0.01	<0.01	<0.01	<0.01	<0.01			
Aliphatics C5-C6 _R	A-T-022	Υ	N	<0.01	<0.01	<0.01	<0.01	<0.01			
Aliphatics >C6-C8 _R	A-T-022	Υ	N	<0.01	<0.01	<0.01	<0.01	<0.01			
Aliphatics >C8-C10 _R	A-T-022	Υ	N	<0.01	<0.01	<0.01	<0.01	<0.01			
Aliphatics >C10-C12 _R	A-T-023	Υ	N	<0.1	<0.1	<0.1	<0.1	<0.1			
Aliphatics >C12-C16 _R	A-T-023	Υ	N	<0.1	<0.1	<0.1	<0.1	<0.1			
Aliphatics >C16-C21 _R	A-T-023	Υ	N	<0.1	<0.1	<0.1	<0.1	<0.1			
Aliphatics >C21-C35 _R	A-T-023	Υ	N	<0.1	<0.1	<0.1	6.6	<0.1			
Total Aliphatics		Υ	N	<0.1	<0.1	<0.1	6.60	<0.1			
Aromatics >C5-C7 _R	A-T-022	Υ	N	<0.01	<0.01	<0.01	<0.01	<0.01			
Aromatics >C7-C8 _R	A-T-022	Υ	N	<0.01	<0.01	<0.01	<0.01	<0.01			
Aromatics >C8-C9 _R	A-T-022	Υ	N	<0.01	<0.01	<0.01	<0.01	<0.01			
Aromatics >C9-C10 _R	A-T-022	Υ	N	<0.01	<0.01	<0.01	<0.01	<0.01			
Aromatics >C10-C12 _R	A-T-023	Υ	N	<0.1	<0.1	<0.1	<0.1	<0.1			
Aromatics >C12-C16 _R	A-T-023	Υ	N	<0.1	<0.1	<0.1	<0.1	<0.1			
Aromatics >C16-C21 _R	A-T-023	Υ	N	<0.1	<0.1	<0.1	<0.1	<0.1			
Aromatics >C21-C35 _R	A-T-023	Υ	N	<0.1	<0.1	<0.1	<0.1	<0.1			
Total Aromatics		Υ	N	<0.1	<0.1	<0.1	<0.1	<0.1			
TPH (Aliphatics & Aromatics)		Υ	N	<0.1	<0.1	<0.1	6.60	<0.1			

Table 1 - Soil Speciated TPH Results (mg/kg)

Report No. 722048-010-(4978) Site Name: Grovefield Way Cheltenham 26/08/2008

Envirolab Ref.													
	PROCEDURE	ISO17025	MCERTS	90361	90362	90363	90364	90365	90366	90367	90368	90369	90370
Location				ВН6	ВН6	SA1	SA2	SA3	TP1	TP2	TP3	TP4	TP5
Depth (m)				0.20	0.50	0.20	0.25	0.40	0.80	0.20	0.15	0.21	0.15
Sample Ref				5	6	2	2	5	4	2	2	2	2
Sample Type				D	D	ES	ES	D	D	ES	ES	ES	ES
Naphthalene _R	A-T-019	Υ	Υ	0.05	0.01	<0.01	0.01	<0.01	<0.01	0.05	0.03	0.29	0.12
Acenaphthylene _R	A-T-019	Υ	N	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01
Acenapthene _R	A-T-019	Υ	Υ	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01
Fluorene _R	A-T-019	Υ	Υ	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	0.03	<0.01	0.01	<0.01
Phenanthrene _R	A-T-019	Υ	Υ	0.09	0.02	<0.01	0.15	<0.01	0.04	0.36	0.04	0.11	0.04
Anthracene _R	A-T-019	Υ	Υ	0.01	<0.01	<0.01	0.02	<0.01	<0.01	0.06	<0.01	0.01	<0.01
Fluoranthene _R	A-T-019	Υ	Υ	0.18	0.07	0.02	0.32	<0.01	0.06	0.42	0.07	0.16	0.13
Pyrene _R	A-T-019	Υ	Υ	0.17	<0.01	<0.01	0.28	0.04	0.05	0.36	0.07	0.14	0.10
Benz [a] anthracene _R	A-T-019	Υ	Υ	0.07	<0.01	<0.01	0.12	<0.01	<0.01	0.10	<0.01	0.05	0.02
Chrysene _R	A-T-019	Υ	Υ	0.11	<0.01	<0.01	0.28	<0.01	0.01	0.21	0.02	0.11	0.07
Benzo [b] fluoranthene _R Benzo [k] fluoranthene # _R	A-T-019	Υ	Υ	0.26	<0.01	<0.01	0.26	<0.01	0.01	0.20	<0.01	0.06	<0.01
Benzo [a] pyrene _R	A-T-019	Υ	Υ	0.12	<0.01	<0.01	0.10	<0.01	<0.01	0.1	<0.01	0.0	<0.01
Indeno [123-cd] pyrene _R	A-T-019	Υ	Υ	0.10	<0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.04	0.02
Dibenz [ah] anthracene _R	A-T-019	Υ	Υ	0.03	0.02	0.01	<0.01	<0.01	0.03	<0.01	0.01	0.01	<0.01
Benzo [ghi] perylene _R	A-T-019	Υ	Υ	0.16	0.03	0.03	0.12	<0.01	<0.01	0.04	0.04	0.08	0.03
Total 16 PAH Reported		Υ	N	1.36	0.15	0.08	1.69	0.05	0.21	1.96	0.29	1.08	0.53

[#] Due to coelution Benzo [b] fluoranthene and Benzo [k] fluoranthene are reported as one value.

Table 2 - Soil PAH Results (mg/kg, expressed on a dry weight basis)

26/08/2008

Envirolab Ref.													
	PROCEDURE	ISO17025	MCERTS	90371	90372	90373	90374	90375	90376	90377	90378	90379	90380
Location				TP6	TP6	TP7	TP8	TP9	TP8	TP9	TP10	TP11	TP12
Depth (m)				0.65	0.15	0.60	0.90	0.60	0.60	0.20	0.40	0.20	0.15
Sample Ref				3	1	4	5	4	3	2	3	1	2
Sample Type				ES	ES	ES	D	ES	ES	D	D	ES	ES
Naphthalene _R	A-T-019	Υ	Υ	<0.01	0.20	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene _R	A-T-019	Υ	N	<0.01	0.16	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenapthene _R	A-T-019	Υ	Υ	<0.01	0.06	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluorene _R	A-T-019	Υ	Υ	<0.01	0.07	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	0.01
Phenanthrene _R	A-T-019	Υ	Υ	<0.01	1.35	0.01	<0.01	0.03	0.01	0.06	<0.01	0.03	0.20
Anthracene _R	A-T-019	Υ	Υ	<0.01	0.35	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	0.04
Fluoranthene _R	A-T-019	Υ	Υ	<0.01	3.33	0.04	<0.01	0.07	0.07	0.13	<0.01	0.10	0.34
Pyrene _R	A-T-019	Υ	Υ	<0.01	3.05	0.03	0.03	0.06	0.05	0.11	<0.01	0.10	0.30
Benz [a] anthracene _R	A-T-019	Υ	Υ	<0.01	1.95	<0.01	<0.01	0.03	<0.01	0.02	<0.01	<0.01	0.14
Chrysene _R	A-T-019	Υ	Υ	<0.01	3.35	<0.01	<0.01	0.07	<0.01	0.09	<0.01	0.04	0.31
Benzo [b] fluoranthene _R Benzo [k] fluoranthene # _R	A-T-019	Υ	Υ	<0.01	2.55	<0.01	<0.01	<0.01	<0.01	0.06	<0.01	<0.01	0.35
Benzo [a] pyrene _R	A-T-019	Υ	Υ	<0.01	1.81	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	0.05
Indeno [123-cd] pyrene _R	A-T-019	Υ	Υ	0.01	1.16	0.02	<0.01	0.01	0.02	<0.01	0.01	0.02	0.16
Dibenz [ah] anthracene _R	A-T-019	Υ	Υ	<0.01	0.08	0.01	<0.01	<0.01	<0.01	<0.01	0.01	0.02	<0.01
Benzo [ghi] perylene _R	A-T-019	Υ	Υ	0.02	1.93	<0.01	0.02	0.01	<0.01	0.02	<0.01	0.02	0.22
Total 16 PAH Reported		Υ	N	0.03	21.40	0.11	0.05	0.30	0.15	0.49	0.02	0.34	2.12

[#] Due to coelution Benzo [b] fluoranthene and Benzo [k] fluoranthene are reported as one value.

Table 3 - Soil PAH Results (mg/kg, expressed on a dry weight basis)

26/08/2008

Envirolab Ref.									
	PROCEDURE	ISO17025	MCERTS	90381					
Location				TP13					
Depth (m)				0.20					
Sample Ref				2					
Sample Type				ES					
Naphthalene _R	A-T-019	Υ	Υ	0.01					
Acenaphthylene _R	A-T-019	Υ	N	<0.01					
Acenapthene _R	A-T-019	Υ	Υ	0.02					
Fluorene _R	A-T-019	Υ	Υ	<0.01					
Phenanthrene _R	A-T-019	Υ	Υ	<0.01					
Anthracene _R	A-T-019	Υ	Υ	<0.01					
Fluoranthene _R	A-T-019	Υ	Υ	0.07					
Pyrene _R	A-T-019	Υ	Υ	0.07					
Benz [a] anthracene _R	A-T-019	Υ	Υ	0.06					
Chrysene _R	A-T-019	Υ	Υ	0.12					
Benzo [b] fluoranthene _R Benzo [k] fluoranthene # _R	A-T-019	Υ	Y	0.01					
Benzo [a] pyrene _R	A-T-019	Υ	Υ	0.03					
Indeno [123-cd] pyrene _R	A-T-019	Υ	Υ	0.08					
Dibenz [ah] anthracene _R	A-T-019	Υ	Υ	<0.01					
Benzo [ghi] perylene _R	A-T-019	Υ	Υ	<0.01					
Total 16 PAH Reported		Υ	N	0.47					

[#] Due to coelution Benzo [b] fluoranthene and Benzo [k] fluoranthene are reported as one value.

Table 4 - Soil PAH Results (mg/kg, expressed on a dry weight basis)

Envirolab Ref.	PROCEDURE	ISO17025	MCERTS	90362	90363	90366	90369	90370	90371	90372	90373	90374	90375
Location				ВН6	SA1	TP1	TP4	TP5	TP6	TP6	TP7	TP8	TP9
Depth (m)				0.50	0.20	0.80	0.21	0.15	0.65	0.15	0.6	0.9	0.6
Sample Ref				6	2	4	2	2	3	1	4	5	4
Sample Type				D	ES	D	ES	ES	ES	ES	ES	D	ES
>C6-C10 _R	A-T-007	Υ	N	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
>C10-C25 _R	A-T-007	Υ	N	<10	<10	<10	<10	<10	<10	77	<10	<10	<10
>C25-C36 _R	A-T-007	Υ	N	<10	<10	<10	<10	<10	<10	47	<10	<10	<10
Comments	A-T-007	N	N	-	-	-	-	-	-	Possible PAH	-	-	-

Table 5 - Soil Banded TPH Results (mg/kg, expressed on a dry weight basis)

Envirolab Ref.	PROCEDURE	ISO17025	MCERTS	90376	90377	90378	90379	90380	90381		
Location				TP8	TP9	TP10	TP11	TP12	TP13		
Depth (m)				0.6	0.2	0.4	0.2	0.15	0.20		
Sample Ref				3	2	3	1	2	2		
Sample Type				ES	D	D	ES	ES	ES		
>C6-C10 _R	A-T-007	Υ	N	<10	<10	<10	<10	<10	<10		
>C10-C25 _R	A-T-007	Υ	N	<10	<10	<10	<10	<10	<10		
>C25-C36 _R	A-T-007	Υ	N	<10	<10	<10	<10	<10	<10		
Comments	A-T-007	N	N	-	-	-	-	-	-		

Table 6 - Soil Banded TPH Results (mg/kg, expressed on a dry weight basis)

Envirolab Ref.										
	90361	90362	90363	90364	90365	90366	90367	90368	90369	90370
Location	BH6	BH6	SA1	SA2	SA3	TP1	TP2	TP3	TP4	TP5
Depth (m)	0.20	0.50	0.20	0.25	0.40	0.80	0.20	0.15	0.21	0.15
Sample Ref	5	6	2	2	5	4	2	2	2	2
Sample Type	D	D	ES	ES	D	D	ES	ES	ES	ES
Туре	Loam	Clay	Clay	Loam	Clay	Clay	Clay	Loam	Loam	Loam
Colour	Brown	Grey	Brown							
Consistency	Loose	Firm	Firm	Loose	Firm	Firm	Firm	Loose	Loose	Loose
Some Stones	Yes									
>50 Stones	No									
Some Vegetation	Yes									
Very Wet	No									
Strong Odour	No									

Table 7 - Soil Matrix Table

Envirolab Ref.										
	90371	90372	90373	90374	90375	90376	90377	90378	90379	90380
Location	TP6	TP6	TP7	TP8	TP9	TP8	TP9	TP10	TP11	TP12
Depth (m)	0.65	0.15	0.60	0.90	0.60	0.60	0.20	0.40	0.20	0.15
Sample Ref	3	1	4	5	4	3	2	3	1	2
Sample Type	ES	ES	ES	D	ES	ES	D	D	ES	ES
Туре	Clay	Loam	Clay	Clay	Clay	Clay	Clay	Clay	Loam	Clay
Colour	Brown	Black	Light Brown	Mixed	Mixed	Mixed	Mixed	Mixed	Brown	Brown
Consistency	Firm	Loose	Firm	Firm	Firm	Firm	Firm	Firm	Loose	Loose
Some Stones	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
>50 Stones	No	No	No	No	No	No	No	No	No	No
Some Vegetation	Yes	Yes	Yes	No	No	Yes	Yes	No	Yes	Yes
Very Wet	No	No	No	No	No	No	No	No	No	No
Strong Odour	No	No	No	No	No	No	No	No	No	No

Table 8 - Soil Matrix Table

Report No. 722048-010-(4978) Site Name: Grovefield Way Cheltenham 26/08/2008

Envirolab Ref.						
	90381					
Location	TP13					
Depth (m)	0.20					
Sample Ref	2					
Sample Type	ES					
Туре	Clay					
Colour	Brown					
Consistency	Firm					
Some Stones	Yes					
>50 Stones	No					
Some Vegetation	Yes					
Very Wet	No					
Strong Odour	No					

Table 9 - Soil Matrix Table

Appendix

Code	Description
+	Increased detection limit due to sample interference
#	Increased detection limit due to sample dilution
\$	Analysis subcontracted
IS	Insufficient sample for analysis
IS-QC	Insufficient sample to retest following QC fail
NDP	No determination possible
~	Sample type outside the scope of our MCERTS accreditation since matrix not included in method validation
"	Analytes are associated with failed AQC targets for MCERTS, but passed UKAS AQC
۸	Sample result is not covered under Envirolab's accreditation schedule for MCERTS as the result exceeds the validated range. See notes 1-3.
F	Analysis suffixed " _F " were performed on the filtered sample
D	Analysis suffixed "D" were performed on the sample air dried at <30°C
0	Analysis suffixed $^{\circ}$ were performed on the sample oven dried at 95° C
R	Analysis suffixed " _R " were performed on the sample as received. Where results are expressed on a dry weight basis, the samples were air dried at 95°C
	Notes
1	For MCERTS the validated range covers up to 15mg/kg for individual PAHs, 200mg/kg for totals.
2	For MCERTS the validated range covers up to 3000mg/kg for Total TPH analysis.
3	For MCERTS the validated range covers up to 0.2mg/kg for individual PCBs, and 1.5mg/kg for the total reported as araclor.
4	Natural stones and debris are excluded from analyses
5	Coarse granular material such as concrete, gravel and brick are not MCERTS accredited if they comprise the major part of the sample. Envirolab are currently accredited for MCERTS on soil types Sand, Clay and Loam only

Report No. 722048-010-(4978) Site Name: Grovefield Way Cheltenham 26/08/2008

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden

Deeside CH5 3US

Tel: (01244) 528700 Fax: (01244) 528701 email: mkt@alcontrol.co.uk

website: www.alcontrol.co.uk

Envirolab Sandpits Business Park Mottram Road Hyde

SK14 3AR ATTN: Subcon

CERTIFICATE OF ANALYSIS

Date: 11 September, 2008

Our Reference: 08/14520/02/01

Your Reference: 722048-5020

Location: GROVEFIELD WAY

A total of 2 samples was received for analysis on Wednesday, 27 August 2008 and completed on Wednesday, 03 September 2008. Accredited laboratory tests are defined in the log sheet, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation. We are pleased to enclose our final report, it was a pleasure to be of service to you, and we look forward to our continuing association.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials- whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Signed

<u>Diane Whittlestone</u>
Tech. Support Manager

David O'Hare
Project Manager

Valid if signed by any of the above signatories.

Caroline Suttie

Project Coordinator Team Leader

Compiled By

Briony Johnson

ALcontrol Laboratories TEST SCHEDULE

JOB NUMBER: 08/14520/02 **BATCH NUMBER**: 1

CLIENT REF/CODE: 722048-5020

ORDER NUMBER: 34708 * indicates test subcontracted

Numeric values indicate

additional scheduling

DATE OF RECEIPT: 27/08/08 TURNAROUND: 5 days

LOCATION: GROVEFIELD WAY

CLIENT: Envirolab

CONTACT: Subcon

			UKAS A	ccredited ?	√ v	′ √	✓						
Sample Number	Sample Identity	P/V	Depth	Sample Type	(CVAF)	Iphate Kone	р н (
1	90759 BH5 EW1	1lplastic	5.75	LIQUID	X	X	Χ						
2	90760 BH8 EW1	1lplastic	2.55	LIQUID	X Z	X	Х						
			Total Numbe	r of Tests	2	2	2						

Page 2 of 8

Printed: 11/09/08 16:49:24

Validated 🗸	ALcontrol L	aboratories Analyti	cal Services	# ISO 17025 accredited
Preliminary		Table Of Results		M MCERTS accredited* Subcontracted test
Joh Number	08/14520/02/01	Matrix•	LIOUID	» Shown on prev. repor

Client:EnvirolabLocation:GROVEFIELD WAYClient Ref. No.:722048-5020Client Contact: Subcon

Cheff Kel. 190	122040	3020		Chent	Contact	Buocon			
Sample Identity	90759 BH5 EW1	90760 BH8 EW1							
Depth (m)	5.75	2.55						₹	
Sample Type	LIQUID	LIQUID						etho	CoD
Sampled Date	21.08.08	21.08.08						Method Code	LoD/Units
Sample Received Date	27.08.08	27.08.08							
Batch	1	1							
Sample Number(s)	1	2							
Arsenic Dissolved (ICP-MS)	6.2	2.7						TM152 [#]	<0.75 ug/l
Boron Dissolved (ICP-MS)	2500	1400						TM152 [#]	<20 ug/l
Cadmium Dissolved (ICP-MS)	< 0.22	< 0.22						TM152 [#]	<0.22 ug/l
Chromium Dissolved (ICP-MS)	7	8						TM152 [#]	<1 ug/l
Copper Dissolved (ICP-MS)	7.5	8.1						TM152 [#]	<1.6 ug/l
Lead Dissolved (ICP-MS)	<0.4	<0.4						TM152 [#]	<0.4 ug/l
Nickel Dissolved (ICP-MS)	30	23						TM152 [#]	<1.5 ug/l
Selenium Dissolved (ICP-MS)	31	9						TM152 [#]	<1 ug/l
Zinc Dissolved (ICP-MS)	8	7						TM152 [#]	<5 ug/l
Mercury Dissolved (CVAF)	< 0.01	< 0.01						TM183 [#]	<0.01 ug/l
Sulphate (soluble)	3200	3800						TM098#	<3 mg/l
pH Value	8.28	8.27						TM133 [#]	<1.00 pH Units

Date 11.09.2008

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

 Job Number:
 08/14520/02/01

 Client:
 Envirolab

 Client Ref. No.:
 722048-5020

Report Key: Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10⁻⁷

NDP No Determination Possible * Subcontracted test

NFD No Fibres Detected » Result previously reported (Incremental reports only)

ISO 17025 accredited M MCERTS Accredited

PFD Possible Fibres Detected EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

ISO 17025 Accredited MCERTS Accredited Surrogate Corrected **Summary of Method Codes contained within report:** Method **Description** Reference No. Method 4500E, AWWA/APHA, 20th Determination of Sulphate using the Kone Analyser TM098 NA Ed., 1999 **TM133** BS 1377: Part 3 1990;BS 6068-2.5 Determination of pH in Soil and Water using the GLpH pH Meter NA Method 3125B, AWWA/APHA, 20th TM152 Analysis of Aqueous Samples by ICP-MS NA Ed., 1999 BS EN 23506:2002. (BS 6068-Determination of Trace Level Mercury in Waters and Leachates TM183 NA 2.74:2002) ISBN 0 580 38924 3 by PSA Cold Vapour Atomic Fluorescence Spectrometry

¹ Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C. **NA** = not applicable.